
MultiSource Virtualization Plugin

Overview

The multiple source query plugin allows SQuirreL users to create a virtual data source
that may consist of multiple data sources on different servers and platforms. The user
can enter one SQL query to combine and join information from multiple sources. Any
database that has a JDBC driver is supported including NoSQL databases such as
MongoDB.

Benefits
 The plugin allows SQuirreL to natively support multiple source queries.
 No data source or server changes are required.
 The plugin supports standard SQL including joins, group by, aggregation, LIMIT,

and ordering where tables may come from one or more sources.
 The plugin will perform function translation when a user requests a function or

SQL feature/syntax that is not supported by a certain source.
 Users can export the virtualization information and use the virtualization driver in

other Java programs and reporting software.

Installation

1. Download and install SQuirreL. Add the MultiSource plugin during installation or
add to a current version by unzipping multisource.zip in the plugins folder.

2. The plugin contains unityjdbc.jar in folder squirrel/plugins/multisource.
Copy this jar into the squirrel/lib folder. Make sure to add other database
JDBC jars into the squirrel/lib folder or JRE classpath. The plugin cannot
access drivers in custom classpaths used by SQuirreL.

UnityJDBC JAR Location

Put UnityJDBC JAR in squirrel/lib folder

3. Start SQuirreL. The multisource plugin should be visible in the plugin list.

How It Works

1. Register data source aliases in SQuirreL as usual. This example has connections to
a Microsoft SQL Server database, a MySQL database, an Oracle database, a
PostgreSQL database, and a MongoDB database all containing the TPC-H
benchmark data. Note that any database with a JDBC driver is supported including
those accessible using the JDBC-ODBC bridge. For MongoDB support, the latest
MongoDB Java driver should also be in the squirrel/lib folder.

Microsoft SQL Server MySQL

Oracle Postgres

Register MongoDB Driver MongoDB

2. Make sure you have registered the UnityJDBC MultiSource Virtualization driver
(during installation). Create an alias consisting of virtual sources. The name field
can be any name. It does not have to contain "virtual".

Create Virtual Source Connect to Virtual Source

3. Add existing JDBC connections (SQuirreL aliases) to the virtual source. The
example adds all five of the sources created above. On the source name (in this
case virtualDemo), right click and select (Virtualization) Add source.

Before add Microsoft SQL (mssql) source

Select the source to add and click the Add button. Progress is shown.

After adding the Microsoft source. Tables are visible in the object tree view.

4. Users can add as many sources as they wish. You can also rename the source in
the virtual view. It does not have to be the same as the alias name used by
SQuirreL.

 When adding Oracle sources, make sure to specify a schema so that system
tables and tables from all schemas are not extracted.

 You can also filter tables added by catalog name, schema name, and table
filters.

 The table filters to include are specified in SQL (JDBC) syntax with a % as
a wild-card match. The table exclusion filters are specified as Java regular
expressions.

Adding an Oracle Source with a Schema

Object Tree View with all Five Sources Added

5. The user can execute an SQL query that spans multiple sources and get a single
result. The virtualization is transparent to the user and SQuirreL.

SQL Query joining tables in MySQL, Microsoft SQL Server, Oracle, PostgreSQL, and MongoDB

A Translation Example

The plugin uses features of the UnityJDBC driver to perform virtualization and
translate functions that are not implemented by certain sources. For example, MSSQL
does not support TRIM(), but you can do the same result using RTRIM(LTRIM()).
Unity will automatically translate a TRIM() function specified in a MSSQL query to
the correct syntax supported by the database.

This translation is supported for common databases and can be freely extended by
user-defined functions and translations for each database dialect.

EXPLAIN can be used to understand how a SQL query is translated to queries on
individual sources.

Example TRIM() Translation for MSSQL

Encryption

The plugin saves its configuration information in the folder multisource under the
SQuirreL user folder. If no password is specified when creating an alias, schema and
connection information (including passwords) are stored in plain text. To encrypt the
configuration files, specify a password during connection (user id is ignored).

Configuration File Location

Specify Encryption by Providing a Password

Virtualization Export for use with Other Programs and Reporting Software

Once a virtualization has been created, all the information necessary is available in the
XML files created and stored in the plugin/multisource folder in the SQuirreL user
directory. These files can be copied and moved to another location and used with any
Java/JDBC program or reporting software. These files can be copied directly or
exported from within SQuirreL.

Exporting Virtualization Information for Use in Other Programs

Existing XML configuration files can be used by specifying an absolute or relative
path in the JDBC URL. For example, if the user has saved the sources.xml file (and
the associated schema files for sources in the directory C:\tmp, then a JDBC
connection URL is: jdbc:unity://c:\tmp\sources.xml.

Plugin Limits

The plugin source code, like all of SQuirreL, is released under the GNU Lesser
General Public License. The UnityJDBC virtualization driver is released under a
commercial license. The UnityJDBC driver included in the plugin is fully functioning
with no time limits allowing an unlimited number of sources and queries. The only
limitation is the size of the result set is limited to the first 100 rows. (Note there is no
limit on the number of rows extracted from each source. SELECT COUNT(*)

FROM table with a 1 million row table works as it only returns one result row.)
Use LIMIT 100 to get the first 100 results of a query.

For more information and technical support for the MultiSource plugin contact:

UnityJDBC Support, support@unityjdbc.com, 250-807-9390

UnityJDBC driver information: www.unityjdbc.com

